Accepted as Short Talk			Presenter	
Торіс	ID	Abstract Title	First Name	Last Name
H. pylori and microbiota	51	Dual RNA fluorescent in situ hybridization and immunofluorescence reveals the spatial distribution of Helicobacter pylori and non-H. pylori bacteria in gastric mucosal biopsies during gastric intestinal metaplasia	Amanda	Rossiter
<i>H. pylori</i> and microbiota	64	CagA determines the microbiome changes and risk of colorectal cancer elicited by Helicobacter pylori infection	Veronika	Engelsberger
H. pylori genomics and pathogenomics	8	Helicobacter pylori DNA Methyltransferases: Possible Role(s) in Pathogenesis and Natural Transformation	Rao	Desirazu
H. pylori genomics and pathogenomics	33	Study of the resistome and virulome of Helicobacter pylori by NGS approach using DNA Capture technology	Philippe	Lehours
H. pylori genomics and pathogenomics	44	Roles of oipA phase variation on Helicobacter pylori- induce cell elongation	Ashansa Pamodhi Ramanayake	Mudiyanselage
H. pylori genomics and pathogenomics	50	Methylome evolution through lineage-dependent selection in the gastric pathogen Helicobacter pylori	Sebastian	Suerbaum
H. pylori pathogenicity mechanisms	79	Helicobacter pylori vacuolating cytotoxin A (VacA) hijacks host cell endosomes for intracellular activation.	Terry	Kwok
H. pylori virulence factors	17	Role of the CagY Antenna Projection in Helicobacter pylori Cag Type IV Secretion System Activity	Sirena	Tran
<i>H. pylori</i> virulence factors	22	Beyond cellular vacuolation: Helicobacter pylori VacA toxin alters host cell taurine metabolism	Mandy	Westland
<i>H. pylori</i> virulence factors	37	Structure and function of previously unseen	Anna	Roujeinikova
<i>H. pylori</i> virulence factors	40	Cytotoxin-associated gene A regulates STAT3 signaling in Helicobacter pylori infected macrophages	Sebastian	Diechler
<i>H. pylori</i> virulence factors	46	Helicobacter pylori γ-glutamyltransferase relates to changes in bacterial metabolism important for colonization	Sonja	Fuchs
<i>H. pylori</i> virulence factors	48	Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins	Mou-Chieh	Као
Inflammation and innate	30	Role of IgA in immune control of H. pylori infection	Anne	Müller
Inflammation and innate	55	Effects of ADP-heptose on human primary dendritic	Theresa	Neuper
Mechanisms of cancer development and progression	20	The Rspo3/YAP signaling cascade is activated upon epithelial injury and promotes Helicobacter pylori- driven pre-malignant epithelial transformation	Anne-Sophie	Fischer
Mechanisms of cancer development and progression	41	H. pylori and E. coli cooperation and role of host DNA methylation in gastric tumorigenesis.	Emma	Bergsten
Mechanisms of <i>H. pylori</i>	42	Roles of Helicobacter pylori Heterogeneity in Transmission	Sacheera	Angulmaduwa
non-pylori Helicobacters	35	Helicobacter acinonychis adaptation to the stomach of the large felines	Iryna	Tkachenko
non-pylori Helicobacters	78	Deciphering prophages in genus Helicobacter	Filipa	Vale
Signal transduction in carcinogenesis	7	Inhibition of the Oncogenic Stress Response by H. pylori	Elena	Zaika

				1
Signal transduction in	12	Microenvironment-dependent stress response signaling	Behzad	Amirkhizi
carcinogenesis		in Helicobacter pylori-infected cells		
Treatment and	71	CD8+ T cells recognize CagA-derived epitopes and	Maximilian	Koch
prevention of <i>H. pylori</i>		mediate pathogen control in Helicobacter pylori		
and gastric cancer	-	infection	·	
Ireatment and	/6	Evaluation of a multi-epitope vaccine candidate against	Tobias	Giese
prevention of <i>H. pylori</i>		Helicobacter pylori		
and gastric cancer			_	-
Accepted as Poster			Pres	enter
Торіс	ID	Abstract Title	First Name	Last Name
H. pylori and microbiota	31	Analysis of the relationship between Helicobacter and	Darja	Nikitina
		other bacteria in the stomach tissue at genomic and		
		transcriptional levels		
H. pylori and microbiota	67	Dual RNA fluorescent in situ hybridization and	Harriet	Giddings
		immunofluorescence reveals the spatial distribution of		
		Helicobacter pylori and non-H. pylori bacteria in gastric		
		mucosal biopsies during gastric intestinal metaplasia		
II nulari conomics and	2		Akhar	Althor
n. pyion genomics and	Ľ		Акраг	Акраг
H nylori genomics and	17	Application of high-throughput sequencing	Christing	losenhans
nathogonomics	4/	tochnologies for comprehensive analysis of hactorial	Christine	10361118113
patriogenomics		concerns methylation and enigenetics in the model		
		besterium Heliesbester euleri		
H nylori genomics and	59	ESTABLISHMENT OF HELICOBACTER PYLORI	Akbar	Akhar
nathogenomics		DIAGNOSTIC PCR TEST FROM SALIVA		
H. pylori pathogenicity	15	Helicobacter pylori delivers proteases into gastroids	Marina	Cañadas Ortega
mechanisms		through outer membrane vesicles		
H. pylori pathogenicity	65	In-depth characterization of Helicobacter pylori derived	Melanie	Schuerz
mechanisms		outer membrane vesicles after employing different		
		isolation and post-isolation labelling strategies		
H. pylori pathogenicity	66	Transcriptional Response to Lactate in Helicobacter	Angela	Lane
mechanisms		pylori		
H. pylori pathogenicity	69	Investigating domains of TIpD in H. pylori	Raymond	Lopez Magaña
mechanisms				
H. pylori virulence	19	Defining Protein-Protein Interactions within the	Kaeli	Bryant
factors	27	Helicobacter pylori Cag Type IV Secretion System		
H. pylori virulence	2/	Characterization of the H. pylori SecA protein; the role	Patrycja	Ambroziak
factors	20	of its C-terminal tail.	Comuchi	
H. pylori virulence	29	infortease mediated CagA cleavage in Helicobacter pylori	Saruchi	wadnwa
H nylori virulence	28	Elucidating the function of bost-derived cysteine	Anna	Rouieinikova
factors	50	in Helicobacter pylori virulence		
H nylori virulence	48	Exploring povel protein-protein interactions of selected	Christine	losenhans
factors		Helicohacter pylori Cag Type 4 Secretion System		30301110113
		(CagTASS) outer proteins		
<i>H. pvlori</i> virulence	58	T4SS- and ADP-heptose-dependent, but CagA- and	Nicole	Tegtmever
factors		CEACAM-independent, activation of NE-kB by		
		Helicobacter pylori in fibroblasts		
Inflammation and innate	21	Cell type-specific responses to Helicobacter pylori	Giulia	Beccaceci
immunity		infection in gastric glands		
Inflammation and innate	52	Helicobacter pylori-derived outer membrane vesicles	Gunda	Üblagger
immunity		induce activation of primary human monocytes		
Inflammation and innate	68	The protection of tissue-resident memory T cells during	Ruolan	Gong
immunity		Helicobacter pylori infection		

Mechanisms of cancer	32	Genetically engineered murine organoids as in vivo	Anne	Müller
development and		models of gastric carcinogenesis		
progression				
Mechanisms of cancer	39	In vivo CRISPR screen for gastric tumor suppressors	Anne	Müller
development and				
progression				
Mechanisms of cancer	45	THE LEB MOUSE MODEL OF GASTRIC CANCER CAUSED	Artem	Piddubnyi
development and		BY LONG-TERM H. PYLORI INFECTION		
progression				
Mechanisms of cancer	70	Mutational analysis differentiating sporadic carcinomas	Theresa	Dregelies
development and		from colitis-associated colorectal carcinomas		
progression				
Mechanisms of cancer	72	Helicobacter pylori chronic infection promotes	Antonia	Voli
development and		epigenetic silencing of TFF1 via IFNγ up-regulation		
progression				
Mechanisms of H. pylori	34	Regulation of CEACAM expression during Helicobacter	Quynh	Nguyen
host adaptation		pylori infection		
Mechanisms of H. pylori	63	Defining the Role of Ribosome Silencing Factor S (RsfS)	Yasmine	Elshenawi
host adaptation		in planktonic and biofilm growth of Helicobacter pylori		
Mechanisms of H. pylori	75	In depth characterization of antigen-specific CD8+ T	Leonard	Simeth
host adaptation		cells recognizing H. pylori antigens		
non-pylori Helicobacters	5	The Hippo pathway controls Cytolethal Distending Toxin	Armelle	Ménard
		induced nuclear remodeling, DNA damage and		
		increased polyploidy in intestinal epithelial cells		
Signal transduction in	13	USP48-dependent regulation of NF-кВ and cell survival	Lorena	Ferino
carcinogenesis		in the infected gastric mucosa		
Treatment and	9	Targeting the PI3K/AKT/mTORC1 signaling pathway in	TRA LY	NGUYEN
prevention of H. pylori		gastric cancer stem cells		
and gastric cancer				
Treatment and	10	Proprotein convertases inhibition as a new strategy to	TRA LY	NGUYEN
prevention of H. pylori		target Cancer Stem Cells properties in Gastric Cancer		
and gastric cancer				
Treatment and	24	Mechanistic Studies on Helicobacter pylori Inosine-5"-	Sivapriya	Kirubakaran
prevention of H. pylori		monophosphate dehydrogenase (Hp IMPDH) using		
and gastric cancer		small molecules: A potential targeted therapy for the		
		infection.		
Treatment and	26	Structural insights of Helicobacter pylori inosine-5"-	Vijay	Thiruvenkatam
prevention of H. pylori		monophosphate dehydrogenase: Validation of a new		
and gastric cancer		drug target		
Treatment and	53	Helicobacter pylori dormant state: the role of vitamin C	Mara	Di Giulio
prevention of H. pylori				
and gastric cancer				
Treatment and	54	Identification of potentially new anti-infectives against	Dietmar	Pfeiffer
prevention of H. pylori		H. pylori by repurposing FDA-approved drugs		
and gastric cancer				
Treatment and	77	Tackling Helicobacter pylori infection by a pre-clinical,	Verena	Friedrich
prevention of H. pylori		prophylactic subunit vaccine		
and gastric cancer				